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Abstract
Purpose  To establish a model for predicting mild cognitive impairment (MCI) progression to Alzheimer's disease (AD) 
using morphological features extracted from a joint analysis of voxel-based morphometry (VBM) and surface-based mor-
phometry (SBM).
Methods  We analyzed data from 121 MCI patients from the Alzheimer's Disease Neuroimaging Initiative, 32 of whom 
progressed to AD during a 4-year follow-up period and were classified as the progression group, while the remaining 89 
were classified as the non-progression group. Patients were divided into a training set (n = 84) and a testing set (n = 37). 
Morphological features measured by VBM and SBM were extracted from the cortex of the training set and dimensionally 
reduced to construct morphological biomarkers using machine learning methods, which were combined with clinical data 
to build a multimodal combinatorial model. The model's performance was evaluated using receiver operating characteristic 
curves on the testing set.
Results  The Alzheimer's Disease Assessment Scale (ADAS) score, apolipoprotein E (APOE4), and morphological biomark-
ers were independent predictors of MCI progression to AD. The combinatorial model based on the independent predictors 
had an area under the curve (AUC) of 0.866 in the training set and 0.828 in the testing set, with sensitivities of 0.773 and 
0.900 and specificities of 0.903 and 0.747, respectively. The number of MCI patients classified as high-risk for progression 
to AD was significantly different from those classified as low-risk in the training set, testing set, and entire dataset, according 
to the combinatorial model (P < 0.05).
Conclusion  The combinatorial model based on cortical morphological features can identify high-risk MCI patients likely 
to progress to AD, potentially providing an effective tool for clinical screening.
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Introduction

Alzheimer's disease (AD) is an irreversible degenerative brain 
disease and the most common type of dementia in the elderly 
[1]. Currently, there are no effective treatment measures to stop 
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or reverse the progression of AD [2]. The focus of AD inter-
vention has shifted to the mild cognitive impairment (MCI) 
stage, which is an intermediate state between normal aging 
and AD, and has not yet reached the diagnostic criteria for 
dementia. Among MCI patients, 10% to 15% develop progres-
sive mild cognitive impairment (pMCI), while some maintain 
their current cognitive level or even reverse to normal, known 
as stable mild cognitive impairment (sMCI). Early identifica-
tion and treatment of pMCI may delay or even convert it to 
sMCI [3], making accurate diagnosis, early intervention, and 
prognosis prediction of MCI patients particularly important.

MRI is a noninvasive and widely used functional imaging 
technique in neuroimaging research that has advantages in 
obtaining both brain structure and function [4]. In a large 
number of studies on brain structural morphology measure-
ment, cortical atrophy is considered the biological basis of 
cognitive decline and a sensitive biological marker of AD 
[5, 6]. At present, the commonly used methods for measur-
ing brain cortical atrophy include voxel-based morphometry 
(VBM) and surface-based morphometry (SBM). VBM is a 
widely applicable analysis method that has been used for 
measuring brain tissue in various neurological diseases [7]. 
It can accurately obtain voxel-level volume/concentration 
of gray matter (GM). However, the explanation for subtle 
changes in cortical structure is considered less reliable. [8]. 
On the other hand, SBM is not as good as VBM in measur-
ing GM volume [8], but it can quantify changes in cortical 
structure under physiological and pathological conditions 
by extracting morphological parameters such as cortical 
thickness, surface area, and curvature of brain tissue [9]. 
Therefore, the combination of VBM and SBM may provide 
a complementary method for detecting cortical morphologi-
cal changes. In addition, machine learning-based algorithms 
applied to multimodal data have a great advantage in predict-
ing the progression from MCI to AD [10]. Therefore, this 
study hypothesizes that morphological features extracted 
from a joint application of VBM and SBM can help iden-
tify pMCI patients, and the combination of machine learning 
algorithms can improve the efficiency of this identification.

The primary objective of this study was to extract mor-
phological features from the cortical area and use machine 
learning to construct imaging biomarkers to identify pMCI. 
Second, based on imaging biomarkers and related clinical 
features, a combinatorial model will be constructed to pre-
dict high-risk MCI patients who may progress to AD.

Materials and methods

Demographic data

All the cases included in this study were obtained from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

official website (adni.loni.usc.edu), specifically the ADNI-2 
and ADNI-GO datasets. For information on the ethical 
review of the ADNI data, please refer to the website. The 
ADNI was launched in 2003 as a $60 million, 5-year, pub-
lic‒private partnership by the National Institute on Aging, 
the National Institute of Biomedical Imaging and Bioengi-
neering, the United States Food and Drug Administration 
(US FDA), private pharmaceutical companies, and nonprofit 
organizations. A total of 121 patients with a baseline diag-
nosis of mild cognitive impairment (MCI) were included in 
this study, of whom 32 progressed to Alzheimer's disease 
(AD) and were classified as the progression group during 
the 4-year follow-up period, while the remaining 89 were 
classified as the non-progression group. According to the 
time of data entry, these cases were divided into a train-
ing set (n = 84) and a test set (n = 37), with the training set 
used to build the model and the test set used to validate its 
performance, and the details of the study process can be 
found in Fig. 1. The inclusion criteria were as follows: all 
patients initially diagnosed with MCI underwent follow-up 
examination; all patients underwent MRI examination and 
had complete clinical data. The exclusion criteria mainly 
included a lack of biological indicators and scale evaluations 
and patients with conversion phenomena. For detailed infor-
mation on the inclusion and exclusion criteria, please refer 
to the ADNI protocol. In addition, we also collected relevant 
clinical data for this study, including neuroscale informa-
tion such as MMSE (Mini-Mental State Examination), CDR 
(Clinical Dementia Rating), and ADAS (Alzheimer's Dis-
ease Assessment Scale), as well as clinical information such 
as age, gender, education level, and APOE4.

Data preprocessing and feature extraction

In this study, we used the Statistical Parametric Mapping 
(SPM12 Software—Statistical Parametric Mapping) version 
V2.5.5 and the Computational Anatomy Toolbox (CAT12) 
version rl109 as data postprocessing analysis tools based 
on the MATLAB platform. The specific steps followed the 
SPM12 user manual written by Ashburner et al. [11]  and 
the CAT12 user manual written by Gaser et al. [12]. After 
topology correction, spherical expansion, and spherical 
registration, the structural MRI data obtained the central 
cortex map. Based on the graph, multiple cortical indica-
tors are extracted. In VBM, the volume morphological fea-
tures of different brain regions, such as cortical volume, are 
extracted. In SBM, thickness morphological features of dif-
ferent brain regions, such as cortical thickness (CT), sulcus 
depth (SD), gyrification index (GI), and fractal dimension 
(FD), are extracted. Finally, we computed a total of 778 fea-
tures, including 170 VBM features and 608 SBM features. 
Details of the relevant indicators and corresponding brain 
areas can be found in the auxiliary materials.
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Feature reduction and radiomics signature 
construction

To exclude unreproducible, redundant, and irrelevant fea-
tures from the extracted VBM and SBM feature sets in the 
training set, we used variance, minimum redundancy maxi-
mum relevance (mRMR), least absolute shrinkage and selec-
tion operator (LASSO), and gradient boosting decision tree 
(GBDT) ensemble reduction methods for feature reduction. 
Then the SVM algorithm was used to construct a morpho-
logical biomarker based on the remaining features from the 
two feature sets. In this study, we named it the radiomics 
signature (RS), In addition, the SVM algorithm based on 
the training queue uses a cross-validation procedure, includ-
ing an external loop with repeated random splitting of the 
training queue into training subgroups and test subgroups. 
A total of 50 random splits are used to evaluate the classifi-
cation performance. The other is the inner loop of fivefold 
cross-validation used to optimize the hyperparameters of the 
algorithm. We selected the model with the highest accuracy 
to build PS, and the score value calculated based on RS for 
each case reflects the probability of MCI progressing to AD. 
These score values are named rad-scores. The accuracy of 
RS was evaluated in the training and test sets using the area 
under the receiver operating characteristic (ROC) curve, 
and calibration curves were used to evaluate whether the 
imaging biomarkers were overfitted. The detailed steps of 
feature reduction and machine learning are described in the 
supplementary material.

Construction and validation of the combinatorial 
model

We used the reverse stepwise selection method based on the 
Akaike information criterion (AIC) stopping rule to select 
independent predictive factors from the clinical features and 
RS in the training set and constructed a combinatorial model 
based on this foundation by multiple factor logistic regres-
sion. To verify the improvement in model performance after 
including RS, we evaluated the performance of different 
independent predictive factors using the area under the ROC 
curve. In addition, we used the DeLong test to determine 
the differences between the combinatorial model and other 
independent predictive factors. Finally, we calculated the 
risk values for each patient progressing to AD based on the 
model and then divided the training, test, and entire cohorts 
into low- and high-risk groups based on the cutoff value of 
the training set ROC curve. The number of patients who 
actually progressed from MCI to AD was compared between 
the low- and high-risk groups. We used the Hosmer‒Leme-
show test to analyze the goodness of fit of the combinatorial 
model and used calibration curves to intuitively evaluate the 
consistency between the predicted pMCI probability and the 
actual pMCI probability.

Statistical analysis

All statistical analyses were performed using MedCalc soft-
ware (V.11.2; 2011 MedCalc Software bvba, Mariakerke, 

Fig. 1   Study flowchart
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Belgium), SPSS software 17.0 (IBM, Armonk, NY), Graph-
Pad (San Diego, CA), and R software (version 3.4.1; http://​
www.​rproj​ect.​org). The Kolmogorov‒Smirnov test was 
used to evaluate the normality of variable distributions. The 
continuous variables were compared by performing a two-
sample t test or Mann–Whitney U test, and the categorical 
variables were compared by a Chi-square test. All statis-
tics were two way, and the statistical significance was set 
at P < 0.05.

Result

Comparison of clinical factors

All clinical data between the training set and test set were 
not statistically significant (P > 0.05). There were statisti-
cally significant differences (P < 0.05) in CDR and ADAS 
scores between the stable and progressive MCI groups in 
the training set and test set. Additionally, there was a sta-
tistically significant difference (P < 0.05) in MMSE scores 
between the stable and test groups in the training set, while 
the other clinical data had no statistically significant differ-
ences (P > 0.05), as shown in Table 1.

Construction and validation of the radiomics 
signature

After feature dimensionality reduction, three features were 
retained, including one voxel morphological feature and 
two surface morphological features: hippocampal volume, 
island-short-circuit index of the insula, and folding of the 

superior parietal gyrus. The RS constructed based on these 
three features showed good predictive performance in both 
the training and testing sets. The AUC values were 0.865 
and 0.826, and the specificity values were 0.903 and 0.747, 
respectively. The sensitivity values were 0.773 and 0.900, 
and the calibration curve showed that the RS did not exhibit 
overfitting. In addition, there was a significant difference in 
rad-score between the training and testing sets, as shown in 
Fig. 2.

Construction and validation of the combinatorial 
model

Based on stepwise logistic regression analysis, APOE4, 
ADAS scores, and RS were identified as independent 
predictors of pMCI, and a combinatorial model was con-
structed, as shown in Table 2. The Hosmer‒Lemeshow 
test showed that the combinatorial model did not overfit 
(P > 0.05), and the calibration curve demonstrated that 
the predictive performance of the combinatorial model 
was consistent with the actual pMCI status. The ROC 
curve showed that the AUC of the combinatorial model 
was 0.945 and 0.867 in the training and testing groups, 
respectively, with a sensitivity of 0.909 and 0.900 and a 
specificity of 0.823 and 0.747. The probability of progres-
sion to AD for each patient based on the combinatorial 
model showed significant differences in both the training 
and testing groups (P < 0.05) (Fig. 3). The DeLong test 
showed that the diagnostic performance of the combined 
model was significantly different from that of the inde-
pendent predictor APOE4 (P < 0.05) and the independent 
predictor ADAS in the testing set (P < 0.05), but there was 

Table 1   Comparison and analysis of clinical data between the training and test sets

ADAS Alzheimer’s Disease Assessment Scale, APOE4 apolipoprotein E 4, CDR Clinical Dementia Rating Scale, MMSE Mini-Mental State 
Examination

Characteristics All cohort 
(n = 121)

Training cohort (n = 84) Test cohort (n = 37) Training cohort 
vs. Test cohort

MCI stable 
(n = 62)

MCI progress 
(n = 22)

P value MCI stable 
(n = 27)

MCI progress 
(n = 10)

P value P value

Gender (n, %)
 Male 73 (60.33) 40(64.51) 10 (45.45) 0.096 15 (55.55) 8 (80.00) 0.197 0.785
 Female 48 (39.67) 22(35.49) 12 (54.55) 12 (44.45) 2 (20.00)

APOE4 (n, %)
 Negative 56 (46.28) 35(56.45) 5 (22.72) 0.127 13 (48.15) 3 (30.00) 0.175 0.656
 Positive 65 (53.72) 27(43.55) 17 (77.28) 14 (51.85) 7 (70.00)
 Age (year) 72.74 ± 7.3 72.04 ± 7.32 75.23 ± 5.72 0.068 71.78 ± 7.72 74.15 ± 8.65 0.428 0.133
 MMSE (score) 27.88 ± 1.65 28.03 ± 1.62 26.86 ± 1.58 0.004* 28.48 ± 1.52 27.50 ± 1.43 0.087 0.994
 CDRS (score) 1.37 ± 0.78 1.23 ± 0.78 1.80 ± 0.75 0.004* 1.16 ± 0.60 1.80 ± 0.78 0.013* 0.780
 ADAS (score) 9.65 ± 4.61 8.43 ± 3.72 13.30 ± 5.27  < 0.001* 8.33 ± 3.18 12.70 ± 6.07 0.007* 0.833
 PTEDUCAT 

(year)
15.88 ± 2.68 15.79 ± 2.85 16.18 ± 2.70 0.576 15.89 ± 2.19 15.70 ± 3.09 0.836 0.918

http://www.rproject.org
http://www.rproject.org
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no significant difference for other independent predictors 
(Table 3 and Fig. 4). Using the optimal cutoff value of 
0.46329, patients were divided into low-risk and high-risk 
groups, and there was a significant difference in the num-
ber of MCI progressors between the low- and high-risk 

groups in the training set, testing set, and entire cohort 
(P < 0.05) (Fig. 5).

Fig. 2   Panels A and B show the diagnostic performance of RS in the 
training set (left) and testing set (right), respectively. Panels C and D 
show the calibration curves of RS in the training set (left) and testing 
set (right), respectively. Panels E and F show statistically significant 
differences in model scores between pMCI and sMCI observed in the 
training set (left) and testing set (right) for the imaging biomarker. 

Red represents sMCI, and blue represents pMCI. Asterisks (*) indi-
cate a significance level of p < 0.001, the black horizontal line rep-
resents the median, and the upper and lower boundaries of the white 
box represent the upper and lower quartiles of the dataset (color fig-
ure online)
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Discussion

In this study, we established a RS using a combination of 
VBM and SBM models. We found significant differences 
in imaging biomarker scores between patients with sMCI 
and pMCI, indicating that a combination of voxel-based and 
surface-based morphometric biomarkers of the entire brain 
cortex could potentially serve as an imaging feature to iden-
tify patients progressing from pMCI to AD. Furthermore, 
the use of machine learning methods to combine imaging 
biomarkers, APOE4, and ADAS scores further improved 
predictive performance, potentially providing a useful tool 
for clinically identifying individuals at high risk for AD.

Several studies have already demonstrated that measure-
ments of cortical morphology can serve as markers for MCI 
severity or progression. The combination of VBM and SBM 
for measuring the volume and thickness of the entire brain 
cortex in structural MRI reflects progression in pMCI. Wu 
[13] and Long  [14] separately investigated the progression 
mechanism of pMCI using whole-brain cortical VBM and 
SBM, respectively, and found that the areas with reduced 
volume were located in the hippocampus, adjacent to the 
hippocampus, amygdala, cingulate gyrus, angular gyrus, and 
frontal lobe, while the areas with decreased cortical thick-
ness were located in the frontal, temporal, parietal lobes, 
and cingulate gyrus. Their studies also found hippocampal 
volume, the island short gyrus cortical folding index in the 
insula, and the cortical folding index in the posterior cingu-
late gyrus. Therefore, our study provides new insights into 
the morphological evaluation of the cortex.

According to our research results, RS extracted using 
morphological measurement techniques has good diagnos-
tic efficiency in discriminating between pMCI and sMCI, 
which may reflect the main pathological changes in the 
brain cortex associated with pMCI progression. This may 
be related to radiological features such as hippocampal 

volume, island short gyral folding index, and superior 
parietal gyrus folding index, which are associated with 
the conversion from pMCI to AD. Studies have shown 
that the reduction of hippocampal volume is one of the 
biomarkers of early Alzheimer's disease (AD), which may 
involve many biological processes, such as cell death, 
inflammatory response, and neurotransmitter imbalance. 
The measurement of hippocampal volume can assist in the 
early diagnosis of AD, monitoring the progress of disease 
and evaluating the therapeutic effect [15]. Therefore, the 
results of this study suggest that the protection of hip-
pocampal formation may help to delay the development of 
AD. In addition, the insular short gyrus is a region of the 
cerebral cortex, which is involved in the functions of lan-
guage, attention, memory, and cognitive control. The fold 
index of the insular short gyrus cortex reflects the com-
plexity and folding degree of the cerebral cortex, which 
may be related to the connection density of neurons and 
information processing. Measuring the fold index of the 
short insular gyrus can help early diagnose and predict 
whether mild cognitive impairment (MCI) will progress 
to AD [16]. In addition, the fold index of the short insu-
lar gyrus may be related to different types of cognitive 
impairment, which is of great significance for under-
standing the damage pattern and predicting the potential 
of cognitive function recovery. Parieto occipital gyrus is 
a part of cerebral cortex, which is involved in attention, 
working memory, and spatial cognition. The fold index 
of parieto-occipital cortex reflects the folding degree of 
cerebral cortex, which may be related to the connection 
of neurons, information transmission, and the progress of 
AD [17]. These studies also further confirm the results of 
this study. The results of Dang [18] and Garg [19] con-
firmed gray matter changes and hippocampal degeneration 
in the early detection of MCI and Alzheimer’s disease. 
Cho  [20] found that the excessive accumulation of tau 

Table 2   Selection of 
independent predictors

ADAS Alzheimer’s Disease Assessment Scale, APOE4 apolipoprotein E4, CDR Clinical Dementia Rating 
Scale, RS radiomics signature, CI confidence interval, MMSE Mini-Mental State Examination, OR odds 
ratio
* indicates P < 0.05

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) P value OR (95% CI) P value

Gender 1.258 (0.555, 2854) 0.583 NA NA
APOE4 3.512 (1.425, 8.658) 0.006 4.421 (1.240, 15.765) 0.022*
Age (year) 1.060 (0.999, 1.125) 0.054 NA NA
MMSE 0.666 (0.516, 0.859) 0.002 0.708 (0.493, 1.017) 0.062
CDRS 2.619 (1.513, 4.532) 0.001 NA NA
ADAS 1.276 (1.142, 1.426) 0.000 1.157 (1.017, 1.317) 0.026*
PTEDUCAT​ 1.030 (0.885, 1.199) 0.701 NA NA
RS 2.443 (1.715, 3.480) 0.000 303.471 (28.942, 3182.065)  < 0.001*
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protein in the superior parietal cortex is a characteristic 
of early-onset Alzheimer's disease, which also supports 
our research conclusion. In addition, radiological features 
(island short gyral folding index, superior parietal gyrus 
folding index) are also involved in the development mech-
anisms of other diseases. For example, the incidence of 

right middle gyrus lesions in deficit schizophrenia [21] is 
significantly higher than in non-deficit schizophrenia, and 
changes in the morphology of the superior parietal cortex 
[22] are also observed in vascular dementia.

To improve the classification and predictive ability of 
RS in disease, we incorporated clinical information in this 

Fig. 3   Panels A and B show the diagnostic performance of the mul-
timodal combination model in the training set (left) and testing set 
(right), respectively. Panels C and D display the calibration curves of 
the multimodal combination model in the training set (left) and test-
ing set (right), respectively. Panels E and F show the statistically sig-

nificant differences in model scores between pMCI and sMCI in the 
training set (left) and testing set (right), respectively. Red represents 
pMCI, and blue represents sMCI. ** indicates P < 0.001, the red line 
represents the median, and the white box represents the interquartile 
range of the dataset (color figure online)
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Table 3   Diagnostic performance comparison of the multimodal combination model, imaging biomarkers, ADAS, and APOE4 in the training and 
testing sets

a, b, and c indicate the comparison of diagnostic performance between the multimodal combination model and RS, ADAS, and APOE4, respec-
tively
* indicates P < 0.05

Characteristics Training cohort Test cohort

AUC​ Sensitivity Specificity P value AUC​ Sensitivity Specificity P value

Multimodal combinato-
rial model

0.945 0.935 0.823 NA 0.867 0.900 0.778 NA

Radiomics signature 0.866 0.773 0.903 0.054a 0.828 0.900 0.747 0.437a

ADAS 0.778 0.773 0.565 0.001b* 0.720 0.500 0.889 0.063b*

APOE4 0.669 0.682 0.774 P < 0.001c* 0.591 0.700 0.481 0.011c*

Fig. 4   Panels A and B show the ROC curves for the multimodal com-
bination model, RS, APOE4, and ADAS in predicting the progression 
from pMCI to AD in the training set and testing set, respectively. AD 

Alzheimer's disease, ADAS, Alzheimer's Disease Assessment Scale, 
APOE4 apolipoprotein E4

Fig. 5   Panels A, B, and C show the performance of the multimodal combination model in different risk classifications in the entire cohort, train-
ing, and testing sets, respectively. Red represents sMCI, and blue represents pMCI (color figure online)
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study. While cerebrospinal fluid β and tau-amyloid proteins 
(AUC = 0.927) have significant advantages in AD detection, 
they are invasive and cannot be widely applied in clinical 
practice. The features used in our study are all noninvasive. 
Currently, the most commonly used tool both domestically 
and internationally is the MMSE. Our study also showed that 
the MMSE is an independent predictor of MCI disease pro-
gression, but it was not included in the model construction, 
which may further indicate that the MMSE is not sensitive 
for identifying mild cognitive impairment (MCI) [23]. In 
addition, we found that the ADAS score was included as an 
independent predictor in the model, which also demonstrated 
that the ADAS score is more comprehensive and specific 
in evaluating MCI patients. Moreover, in the study by Ben 
Jemaa S et al. on AD [24, 25], they compared the ADAS-
Cog, MMSE, and Clinical Dementia Rating Scale (CDR) 
and found that the ADAS-Cog (AUC = 0.92) exhibited the 
best detection ability, which is consistent with our study 
results. Furthermore, the APOE4 gene [26] may be a poten-
tial target for gene therapy in AD patients, and the above 
conclusion is further confirmed by APOE4 as a feature of 
the model in this study.

The research findings of Shu [27] demonstrated that when 
combined with clinical factors, the AUC value for predicting 
MCI progression based on radiological features increased 
from 0.714 to 0.824. Our study also supports this conclu-
sion, as the diagnostic efficiency of our prediction model 
increased from 0.82 to 0.93 after incorporating ADAS and 
APOE4, which may have been due in part to the use of 
machine learning modeling. Previous studies have shown 
that Hu et al. [28] achieved an AUC of 0.815 and sensitivity 
of 0.8 for classifying sMCI and pMCI using a deep learning 
model. Our model achieved an AUC of 0.841 and sensitivity 
of 0.90, which is significantly higher than Hu's results, indi-
cating that even multimodal combination models are more 
effective than single modality models.

However, there are limitations to our study. First, it is 
a single-center study, and the influence of data from dif-
ferent sources or collection domains may affect the MRI 
data, which often suffer from domain shift problems. Sec-
ond, this is a retrospective study without further longitudinal 
prospective research. Finally, future model construction that 
includes more dimensions of features will be necessary to 
predict the mechanism of pMCI using comprehensive mod-
els that only include a few main clinical features. We hope 
that more data and longitudinal studies in the future can 
verify the results of this study.

In summary, the current research supports our hypoth-
esis that radiological features based on cortical measure-
ments of the entire brain can distinguish between pMCI 
and sMCI. The application of a comprehensive model that 
combines radiological features with clinical information and 
machine learning will be an important method for managing 

progressive MCI patients and may help provide personalized 
treatment strategies in clinical practice.
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